Speed equation of same space ships and their meeting at one point in space (OXYZ) ## **Mohammad Mahbod** mohammad.mahbod44@gmailcom, Isfahan Medical Science University Technical Office, Isfahan Medical Science University ## Speed equation of same space ships and their meeting at one point in space OXYZ If the above mentioned space ship is denoted by (S_1) in the system, parameters of speed and distance shall also be denoted in the system that is (S_2) : $$(V_{x1}, V_{y1}, V_{z1}, x_1, y_1, z_1)$$ Problem: space ship (S_2) is moving to support and assist space ship (S_1) . $(V_{x2}, V_{y2}, V_{z2}, x_2, y_2, z_2)$ Compare the speed equations of the 2 space ship with each other so that space ship (S_1) meets space ship (S_2) at a specified time. Solution: V_{TS2} will suffice to be larger than V_{TS1} . That is $V_{TS2} > V_{TS1}$. Problem: In the above problem, space ships (S_1) and (S_2) were compared. Here, some space ships are compared so that some space ships (S_2) , (S_3) , (S_4) , ... (S_n) will simultaneously meet space ship (S_1) will move first, followed by (S_2) , (S_3) , ... (S_n) , respectively. $$V_{TS1} < V_{TS2} < V_{TS3} < V_{TS4} \dots < V_{TSn}$$ $$V_{x1} < V_{x2} < V_{x3} < V_{x4} \dots < V_{Xn}$$ $$V_{y1} < V_{y2} < V_{y3} < V_{y4} < V_{yn}$$ $$V_{z1} < V_{z2} < V_{z3} < V_{z4} \dots < V_{zn}$$