Speed equation of same space ships and their meeting at one point in space (OXYZ)

Mohammad Mahbod

mohammad.mahbod44@gmailcom, Isfahan Medical Science University Technical Office, Isfahan Medical Science University

Speed equation of same space ships and their meeting at one point in space OXYZ

If the above mentioned space ship is denoted by $\left(\mathrm{S}_{1}\right)$ in the system, parameters of speed and distance shall also be denoted in the system that is $\left(\mathrm{S}_{2}\right)$:
$\left(V_{x 1}, V_{y 1}, V_{z 1}, x_{1}, y_{1}, z_{1}\right)$
Problem: space ship $\left(\mathrm{S}_{2}\right)$ is moving to support and assist space ship $\left(\mathrm{S}_{1}\right)$.
$\left(\mathrm{V}_{\mathrm{x} 2} . \mathrm{V}_{\mathrm{y} 2} . \mathrm{V}_{\mathrm{z} 2} \cdot \mathrm{x}_{2} . \mathrm{y}_{2} . \mathrm{z}_{2}\right)$
Compare the speed equations of the 2 space ship with each other so that space ship $\left(S_{1}\right)$ meets space ship $\left(\mathrm{S}_{2}\right)$ at a specified time.
Solution: $V_{T S 2}$ will suffice to be larger than $V_{T S 1}$. That is $V_{T S 2}>V_{T S 1}$.
Problem:
In the above problem, space ships $\left(\mathrm{S}_{1}\right)$ and $\left(\mathrm{S}_{2}\right)$ were compared. Here, some space ships are compared so that some space ships $\left(\mathrm{S}_{2}\right),\left(\mathrm{S}_{3}\right),\left(\mathrm{S}_{4}\right), \ldots\left(\mathrm{S}_{\mathrm{n}}\right)$ will simultaneously meet space ship (S_{1}) will move first, followed by $\left(\mathrm{S}_{2}\right),\left(\mathrm{S}_{3}\right), \ldots\left(\mathrm{S}_{\mathrm{n}}\right)$, respectively.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{TS} 1}<\mathrm{V}_{\mathrm{TS} 2}<\mathrm{V}_{\mathrm{TS} 3}<\mathrm{V}_{\mathrm{TS} 4} \ldots .<\mathrm{V}_{\mathrm{TSn}} \\
& \mathrm{~V}_{\mathrm{x} 1}<\mathrm{V}_{\mathrm{x} 2}<\mathrm{V}_{\mathrm{x} 3}<\mathrm{V}_{\mathrm{x} 4} \ldots .<\mathrm{V}_{\mathrm{xn}} \\
& \mathrm{~V}_{\mathrm{y} 1}<\mathrm{V}_{\mathrm{y} 2}<\mathrm{V}_{\mathrm{y} 3}<\mathrm{V}_{\mathrm{y} 4} \ldots . .<\mathrm{V}_{\mathrm{yn}} \\
& \mathrm{~V}_{\mathrm{z} 1}<\mathrm{V}_{\mathrm{z} 2}<\mathrm{V}_{\mathrm{z} 3}<\mathrm{V}_{\mathrm{z} 4} \ldots .<\mathrm{V}_{\mathrm{zn}}
\end{aligned}
$$

